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Assessing Data Quality of Peptide Mass Spectra Obtained by
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An algorithm is introduced to assess spectral quality for peptide CID spectra acquired by a quadrupole
ion trap mass spectrometer. The method employs a quadratic discriminant function calibrated with
manually classified ‘bad’ and ‘good’ quality spectra, producing a single ‘spectral quality’ score. Many
spectra examined that do not have significant matches are assessed to have good spectral quality,
indicating that advances in search methods may yield substantial improvements in results.
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Introduction

Two-dimensional liquid chromatography coupled to quad-
rupole ion trap tandem mass spectrometry (ITMS)"? provides
an automated, high-throughput analytical method widely used
to generate data for the automated assignment of peptide
sequences. This technology generates large quantities of spectra
that require searching against protein sequence libraries for
peptide assignment. Sequence library search algorithms com-
pare collision induced dissociation (CID) MS/MS spectra to the
fragment ions predicted from a set of peptides under pre-
defined rules and constraints. Matched peptides are scored and
ranked, and top assignment(s) are reported. Besides spectral
peak selection criteria, the characteristics and performance of
commercial searching engines differ mainly in how to score
and rank “candidate” peptides based upon matched fragment
ions.>~® Peptide bonds are not chemically equivalent within
protonated peptides, and proton retention varies between
moieties after peptide bond cleavage. As a result, dissimilar
intensities of fragment ions and/or incomplete fragment ion
series are usually observed in CID of protonated peptides.
Current sequence search engines are presently unable to
incorporate fundamental mechanisms controlled by ion chem-
istry for peptide bond cleavage into peptide assignments. Thus,
it is not unusual to find incorrect or ambiguous peptide
matches to CID spectra, particularly when the spectra contain
chemical or instrumental noise. Search engines may fail to
assign high quality peptide CID spectra for several reasons:
prominent fragmentation other than amide backbone, unan-
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ticipated post-translational modifications, or sequence-specific
preferred fragmentations. A software tool that measures spec-
tral quality is of value in reviewing and assessing the large data
files acquired by ITMS, particularly for directing the attention
of investigators toward high quality, unassigned spectra.

There are many literature reports about in-house or public
domain packages for scoring matched peptide assignments
after spectral searching but not prior to searching. Search
engines employ some type of signal-to-noise assessment in
peak selection and/or within their scoring. Mascot® utilizes
protein sequence library dependent probability scores for
candidate peptide ranking and statistically derives two ac-
ceptance thresholds: the identity score and the homology
score. PeptideProphet!! uses a statistical model to evaluate
peptide assignment accuracy. A measurement of peptide CID
mass spectral quality could provide an additional utility to
direct more intelligent and productive search strategies. Highly
scored peptide matches from noisy CID spectra may be biased
to false positive assignments. Low scoring peptides matched
from high quality CID spectra can be prone to false negative
assignments. Keller et al. have suggested that peptide CID
spectra can be filtered based upon empirical rules prior to
database searching.!? Distinguishing fragment ion signal from
noise or interference is not always feasible prior to a library
search for ITMS spectra. Manual inspection and sorting is too
labor intensive, but chemists distinguish high vs low quality
spectra easily by visual inspection. Peak rich, over-crowded
peptide CID spectra are too ‘noisy’ for manual interpretation.
Less crowded spectra with prominent peak intensity distribu-
tions suggestive of a sequence ‘ladder’ are more likely candi-
dates for manual interpretation as good quality spectra. When
parent ions fail to dissociate, spectra contain sparse informa-
tion, having too few ions to permit interpretation. Here, we
introduce a simple but robust prototype for scoring the spectral
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quality of protonated peptide CID spectra obtained by ITMS.
Spectra from samples of protein standard mixtures and yeast
lysates were examined by comparing of automated search
engine results to spectral quality scores. Peptide matches by
commercial search engines are affected by spectral quality, and
the spectral quality score is demonstrated to be useful in
critically evaluating results, especially high quality spectra
where further investigation is warranted.

Experimental Data

Protein standard cocktails were made of horse myoglobin
(gi|2506462), bovine serum albumin (gi|1351902), and chicken
lysozyme (gi|126608), all from Sigma-Aldrich Corp (St. Louis,
MO), and were prepared at varied concentrations (May 2003).
S. cerevisiae proteins were sequentially extracted from the
original 5 g pellet using a modified procedure? to produce the
following fractions: yeast soluble fraction (June 2002), light
wash fraction (Sept. 2002), and heavy wash fraction (Sept. 2002).
Each of the three fractions and protein standard cocktails was
denatured, reduced, alkylated, and digested with endoprotein-
ase Lys-C followed by trypsin.!® A 20 ug aliquot of the digest
was analyzed by an automated 2D-LC—MS/MS system. This
system is composed of Shimadzu LC—VP series components
connected directly to a ThermoFinnigan LCQ Classic ion trap
mass spectrometer. This study used data from ‘DTA’ files, ASCII
formatted files for reporting spectral data. DTA files are written
by LCQ_DTA.exe utility from a raw data file acquired in
centroid mode. The constraints for writing DTA files in this
study were as follows: minimum number of peaks, 15; group-
ing tolerance, 1.4; intermediate scans, 1 or 0; and minimum
scans per group, 1. The DTA files were searched against the
NCBInr database or its subset using the search engine Mascot
from Matrix Science. Unless otherwise indicated, Mascot
searches used the NCBInr or yeast subset reference libraries
with fixed carbamidomethyl modification of cysteine residues
and variable modification for oxidation of methionine residues.
MS/MS mass error tolerance was 0.8 Da using monoisotopic
masses. Precursor mass tolerance was + 2 Da. In Mascot, the
score for a MS/MS match is based on the absolute probability
(P) that the observed match between the experimental data
and the database sequence is a random event. The reported
‘Tons Score’ is —10log10(P).!* Mascot ‘Identity Score’ provides
an acceptance threshold with false identification probability
at a confidence level of 0.05. Peptide matches are accepted as
correct if the peptide Ions Scores equal or exceed the Identity
Score threshold.

DTA files were de-isotoped after normalization, where the
de-isotoping window of 3.95 Da was scanned from the m/z
lower boundary to the m/z upper boundary, and any m/z entry
was discarded except those at maximum intensity. These re-
constructed DTA files were used for both building a scoring
function and for scoring spectral quality. The model for scoring
spectral quality takes five parameters out of the re-constructed
spectra. The training data consisted of 77 ‘good’ spectra and
76 ‘bad’ spectra, manually picked from multiply charged
peptide spectra DTA files previously acquired from protein
standards, procedural controls using the procedure described
above, including about 20 extremely noisy spectral DTA files
that helped to anchor the lower boundary of spectral quality
scores at the value of 1.00. The upper boundary of the scores
is anchored by single peak spectra at the value of 4.00. The
size of the training set was determined to be over 10 times as
many as the number of variants in the scoring model. The
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Figure 1. Yeast lysate spectra sorted by spectral quality score
The scoring low boundary at Y ~ 1.00 is for extremely noisy
spectra and the upper boundary at Y ~ 4.00 is for single peak
spectra. Y is the spectral quality score and | is the Mascot lons
Score for the default search.

coefficients of the scoring function were calibrated using the
commercial package S—Plus.!”® The calibration was done via
Jackknife sampling by randomly taking 20% of the manually
screened and labeled data as the calibration testing set and
the remaining as the calibration training set. The process was
repeated 20 times and the best result was reported. This
methodology was chosen to maximally use manually validated
data while avoiding overtraining as much as possible.

Results and Discussion

Spectral Quality Scoring and Distribution. The spatial
distribution pattern of fragment ion peaks is differentiable
between typically noisy vs good quality peptide CID spectra.
The algorithm for scoring spectral quality utilizes such spatial
distribution pattern of spectral peaks. By trial and error
approach, we found the following quadratic discriminant
function works better with the empirically selected parameters.

Y=log{~(k+ ) kX + ) kX X)}
X, =G,/C, % X, = C,/C, % X;=Cy; X, = C,

where C; is the number of peaks larger than a given peak
intensity selection threshold. C; is an adjustable parameter with
a default value set at 5% of base peak intensity. C, and C; are
the number of peaks larger than 3% TIC (total ion current) and
2% TIC, respectively. C, is empirically accountable for mostly
intense spectral peaks and C; for less intense spectral peaks.
C; and GCs are scaled by C; to make X; and X; for quantifying
spectral peak intensity spatial distribution. C; and Cs are the
average peak distance along m/z for the peaks larger than 2%
TIC and within 1.0~1.5% TIC, respectively. These two param-
eters are empirically selected and directly used as the variables
for quantifying spectral peak spatial distribution along the m/z
dimension. Y is defined as the spectral quality score. The
calibrated coefficients are k, —11.105, k; 0.2216, k, 0.4229, k3
0.011 20, k4 0.024 44, ki1 —0.1925, kz2 —0.1552, k33 —0.000 275 5,
kss —0.000 147 0.16 Spectra A—G in Figure 1 visually demonstrate
spectral quality scoring. Spectrum A represents a typical noisy
spectrum. Spectra are less noisy progressing from B—F. With
further increments of the score beyond spectrum F, there are
fewer and fewer peaks in a spectrum. “Single peak” spectra
like G have scores approaching 4.0, the upper boundary of the
range.
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Figure 2. Spectral quality score histogram for the double and
triple charged peptide spectra from yeast lysates and training
data. Left vertical axis is for the training data and right for yeast
lysates. The histogram is divided into five regions along x-axis
for noise, less noisy, good, better and sparse spectral category
regions from left to right.

The distribution of spectral quality scores is plotted in Figure
2 for 11 466 DTA files representing redundant doubly and triply
charged peptides spectra from yeast lysates and the training
data. Most of the noisy spectra in the training set and about
681 (~6%) of yeast lysate data score below 1.10. Spectra are
judged to be not assignable if they have scores below 1.10.
Between the score 1.10 and 1.50 is a boundary range for ‘bad’
and ‘good’ training spectra, with 2273 (~20%) of the yeast lysate
spectra and a similar portion of the protein standard spectra
scoring within this range. Above the score 1.50 are ‘good’
spectra in the training set, the majority of the protein standards,
and about 74% of the yeast lysate spectra. Spectra scoring in
this range are potentially interpretable (3.8 > Y = 1.5). When
the score exceeds 3.80, the spectra contain too few fragment
ion peaks to assign peptide sequence information. None of the
training set and protein standard spectra are found to score
that high, and only 16 (<0.15%) spectra of the yeast lysate are
in that range. The spectral quality score distribution is tabulated
in Table 1 for the yeast lysate fractions obtained using the
modified procedure!? along with the training data. Under well-
controlled situations, the spectral quality score distribution is
fairly consistent from run to run, and peptide spectra catego-
rized as ‘good’ and ‘better’ make up around 20% and 50% of
the total, respectively. This categorization of the spectra quality
of the yeast lysate DTA files indicates that the majority of
peptide CID spectra are potentially interpretable, and that noisy
or poor quality spectra may be well under 10% of the total in
shotgun proteomics.

Effect of Spectral Quality Score on Peptide Matches by
Search Engines. The effect of spectral quality score on search-
ing the spectra in Figure 1 against the NCBInr database is
shown in Table 2 using three commercial search engines,
Mascot, Sonar, and Sequest with various search options. The
noisy spectrum B, having a spectral quality score of 1.02, has
dissimilar peptide matches when searched with monoisotopic
and average masses at varying MS/MS mass error tolerance.
Less noisy spectra such as spectrum C, using Mascot search
with an increased MS/MS mass error tolerance of 1.5 Da,
returns the same peptide match using either monoisotopic or
average mass. Such a match seems reasonable because the
error tolerance is about 1.5 times the difference in m/z between

302 Journal of Proteome Research « Vol. 4, No. 2, 2005

Xu et al.

the average mass and isotopic mass of the peptide fragment
ions. For the spectra scored as ‘good’ (spectrum D), the three
search engines reported the same peptide hit with monoiso-
topic or average mass using varied fragment ion mass error
windows. This suggests that a correct peptide match from a
protonated peptide CID spectrum of low mass resolution and
mass accuracy becomes less ambiguous when it is of high
quality. Commercial search engines derive the same results
with good quality spectra even though there may be variations
in spectral peak selection and peptide match ranking among
the search engines.

Unassigned Good Quality Spectra. The spectral quality score
offers a software solution to screen for potential good quality
peptide CID spectra deserving further investigation or manual
interpretation. Among nonredundant multiply charged CID
spectra of yeast lysates shown in Table 3, over 50% remained
unassigned despite being categorized as good quality spectra.
There are several reasons for lack of assignment for these
spectra, such as protein modifications not considered during
searches, mass error tolerance, incomplete peptide fragmenta-
tion, inadequate reference libraries, and limitations in current
search algorithms and strategies.

Two spectra illustrate the value of examining high quality,
unassigned mass spectra. Figure 3 shows a CID spectrum (Y =
2.10) containing an obvious amino acid ladder ‘LETDE’ or
‘IETDE’. The best peptide match by Mascot (Ions Score 31,
Identity Score 51) suggests a peptide, VLENTEIGDSIFDK, found
in phosphoglycerate kinase from Saccharomyces cerevisiae using
the default search parameters. BLASTing!” the sequencing tag
‘LETDE’ finds multiple entries under Saccharomyces cerevisiae
from the NCBInr. Allowing variable deamidation, the Mascot
Ions Score increases to 85 (Identity Score 54). Alternatively,
using the average mass or increasing the MS/MS m/z error
tolerance to 1.0 Da increases the Mascot Ions Score to
significance (88 or 74). A rational choice can be made by an
investigator between allowing variable deamidation or in-
creased m/z error tolerance based upon sample and instrument
history. In a second example, peptide identification by CID can
suffer from preference for amide fragmentation at the proline
N-terminus'® causing less abundant fragment ions from peptide
bond cleavage elsewhere along the backbone. The default
search assignment of the spectrum in Figure 4 indicated an
insignificant peptide matches (Ions Score 26, Identity Score 49)
when the NCBInr was searched. Low intensity ions below 10%
of the base peak may require a more lenient mass error
tolerance for effective assignment when compared to the major
ions in a good quality spectrum. The score Y = 2.69 indicates
that it is likely to be an interpretable quality spectrum.
Increasing the MS/MS mass tolerance to 1.2 Da raises the Ions
Score to 53 for the peptide assignment shown in Figure 4 in
which small peaks are reasonably assigned.

Peptide Search Assignments Versus Spectral Quality Score.
Figure 5 plots the histogram for the percentage of the significant
peptide hits over the spectral quality scores for nonredundant
multiply charged peptide spectra for data from yeast lysate
analyses. For these DTA files, charge redundant spectra are
eliminated by replacing a DTA file in a doubly charge state with
one in a triply charge state whenever the latter has a higher
peptide value (Ions Score minus Identity Score) using the
default search. The percentage of significant peptide hits
starting under 5% from noisy spectral region (Y < 1.1) goes up
to over 40% after reaching the better spectral quality region (Y
> 1.9). With the spectral quality score beyond 2.9, the percent-
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Table 1. Spectral Quality Score Distribution for Multiply Charged Peptide Spectra of Yeast Lysate?

manually soluble light washed heavy washed

spectral spectral validated data (Jun. 2002) (Sep. 2002) (Sep. 2002) all fractions

quality quality

score Y category ‘bad’ (%) ‘good’ (%) n % total n % total n % total n % total
all 76(100) 77(100) 5096 100 3796 100 2574 100 11466 100
<1.10 noisy 84.2 0 236 4.63 270 7.11 175 6.80 681 5.94
>1.10 < 1.50 less noisy 14.5 13.0 1060 20.8 722 19.0 491 19.1 2273 19.8
> 1.50 < 1.90 good 1.3 24.7 1073 21.1 654 17.2 486 18.9 2213 19.3
>1.90 < 3.80 better 0 62.3 2721 54.4 2144 56.5 1418 55.1 6283 54.8
> 3.80 sparse 0 0 6 0.12 6 0.16 4 0.16 16 0.14

@ n: the number of DTA files; ‘bad’ and good’ are the categories of manually validated data for calibrating the coefficients of the score function

Table 2. Effect of Spectral Quality on Searching against the NCBInr?

spectral search
samples engine search option top hit score threshold top-scored peptide match
spectrum B in Mascot mono. 0.8 Da 11 > 50 NNFPIIKPDSFAGLRALK
Figure 1 Y=1.02 1.2 Da 22 VVIAWSVEASTEIDVAAIK
1.5 Da 27 AADPSQGEMSADAAAGAPLPR
ave. 0.8 Da 46 WAGNANELNAAYAADGYAR
1.2 Da 72
1.5 Da 70
Sonar mono. 0.8 Da 1.2 <0.1 GSALGIGAVFGIAFLIGPIT
1.2 Da 1.2 DTLLGEEELPLTSLLPEL
1.5 Da 0.38 MQQLQQSEAAAGDRLILK
Sequest mono. 1.5 Da 2.23 > 2.0 NSLGICVIDATSGPNTPRK
ave. 1.5 Da 3.99 WAGNANELNAAYAADGYAR
spectrum C in Mascot mono. 0.8 Da 83 > 49 VINDIFGIEEGLMTTVHSITATQK
Figure 1 Y= 1.45 1.2 Da 89
1.5 Da 88
ave. 0.8 Da 15 TGVAVTGVAGIMMLLALAGISLNLWK
1.2 Da 22 TGVAVTGVAGIMMLLALAGISLNLWK
1.5 Da 30 VINDIFGIEEGLMTTVHSITATQK
Sonar mono. 0.8 Da 14 x 1073 <0.1 VINDIFGIEEGLMTTVHSITATQK
1.2 Da 1.9 x 1073
Sequest mono. 1.5 Da 2.52 >2.0 MAAWVKGGAADVDAAVEAAADLLAASR
ave. 1.5 Da 2.51 NLQASSTGLQWYYVYDHSGEAVK
spectrum D in Mascot mono. 0.8 Da 60 > 48 FEQASESEPTTVSYEIAGNSPNAER
Figure 1 Y=1.65 1.2 Da 75
1.5 Da 88
ave. 0.8 Da 57 FEQASESEPTTVSYEIAGNSPNAER
1.2 Da 66
1.5 Da 79
Sonar mono. 0.8Da 1.0 x 1073 <0.1 FEQASESEPTTVSYEIAGNSPNAER
1.2 Da 1.3 x 1073
Sequest mono. 1.5 Da 4.59 > 2.0 FEQASESEPTTVSYEIAGNSPNAER
ave. 1.5 Da 3.89 FEQASESEPTTVSYEIAGNSPNAER

@Y: spectral quality score; mono: monoisotopic mass; ave.: average mass.

age of the significant peptide hits dramatically decreases as the
spectral quality score further increases. This implies that
peptide assignment is a function of spectral quality. Table 3
lists significant peptide hits for spectral quality categories,
where varying peptide hit thresholds, R, has little effect on
peptide hit distribution over spectral quality categories. About
3.8% spectra of the noisy spectra (Y < 1.10) have Mascot Ions
Score exceeding Identity Score using the default search condi-
tions. This value is below the false identification rate statistically
derived in Mascot search engine. Over 80% of total significant
peptide hits come from the good and better quality spectra,
but still more than half of those good and better quality spectra
fail to generate significant peptide hits. These spectra deserve
further investigation in order to decrease false negative iden-
tifications. Figure 6 illustrates that the number of incorrect

peptide hits above the threshold increases with lower spectral
quality scores for protein standards. A protein mis-assignment
may result for any identified peptide originating from protein-
(s) unexpected in the sample; and a correct protein assignment
may be likely for any matched peptide from the proteins
expected in the sample. Under default search conditions (top
plot) protein mis-assignments above the threshold are 0% for
noisy spectra, about 33% for less noisy spectra, 8% for good
spectra, and 0% for better spectra. As shown in the lower plot
of Figure 6, allowing more modifications in a search produces
more peptide matches to the expected target proteins. How-
ever, expanding possible modifications introduces more arbi-
trary matches in peptide identification, so protein mis-
assignments above threshold become 50% for ‘noisy’ spectra,
about 55% for ‘less noisy’ spectra, 36% for ‘good’ spectra, and
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Table 3. Distribution of Peptide Hit Rate at Varied Thresholds, R?

R=1.00 R=>=0.85 R=0.70
quality spectral no. of % % %
score Y category spectra hit rate total hit rate total hit rate total
all 5873 23.2% 30.7% 38.5%

(100%) (1365) 100 (1800) 100 (2258) 100
< 1.10 noisy 371 3.77% 6.74% 10.2%

(6.31%) (14) 1.03 (25) 1.39 (38) 1.68
=1.10~ less noisy 1218 18.0% 21.9% 27.6%
< 1.50 (20.7%) (219) 16.0 (267) 14.8 (336) 14.9
>1.50~ good 1156 26.0% 32.0% 37.5%
< 1.90 (19.7%) (300) 22.0 (370) 20.6 (433) 19.2
>1.90~ better 3121 26.6% 36.4% 43.4%
< 3.80 (53.1%) (830) 60.8 (1135) 63.0 (1448) 64.1
>3.80 sparse 7 28.6% 42.9% 42.9%

(0.12%) (2) 0.15 3) 0.17 3) 0.13

@ R: Mascot Ions Score divided by Ion Identity score; hit rate: the number of spectra at or above threshold R over total spectra; %total: percentage of hits

over the total number of hits.
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Figure 4. Peptide(2+) CID spectrum containing prolines from
Yeast lysate, MH is from first entry in DTA files for precursor
peptide mass. Y is the spectral quality score

9% for ‘better’ spectra. Protein mis-assignments above thresh-
old drop significantly as spectral quality score increases,
indicating that peptide identification by Mascot is a function
of spectral quality, as expected.

In addition to its correlation with peptide assignments by
Mascot, spectral quality also impacts thresholds for peptide
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Figure 5. Histogram for the percentage of significant peptide hits
(Mascot lons Score = Identity Score) versus the spectral quality
score for 4008 double and 1866 triply charged peptide spectra
from yeast lysates without charge redundant DTA files.

matches, this can be graphically illustrated by subjectively
adjusting peptide assignment thresholds away from Mascot
thresholds (y axis at 0) inversely proportionally to spectral
quality score for alleviating false identifications. In the top plot
under the default search, correct protein assignments are
enhanced without adding any protein mis-assignment by
purposely drawing the horizontal red lines further under
Mascot threshold line (y axis at 0) as spectral quality score goes
beyond 1.9. When the horizontal red lines are arbitrarily drawn
above the Mascot threshold line (y axis at 0) for ‘good’ spectra
(scoring between 1.5~1.9) and ‘less noisy’ spectral (scoring
between 1.1~1.5) regions, false protein assignment rates drop
to 0% from 8% for the ‘good’ spectra and to 14% from 33% for
‘less noisy’ spectra. Even with more variable modifications
allowed in the bottom plot, the threshold adjustments used in
the upper panel still apply with a significant increase in correct
protein assignment with a single mis-assignment for the ‘better’
spectra scored at or above 1.9. An arbitrary downward red line
above the Mascot threshold (y axis at 0) can even be drawn
from the less noisy spectra to the good spectra in order to
separate correct protein assignments from the region where
correct and incorrect protein assignments overlap. Thus,
peptide match thresholds in peptide identification may be
adjusted according to spectral quality measurement.
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Figure 6. Mascot lons score subtracted from ldentity Score
versus the spectral quality score for 295 double charged DTA
files from 100 fmol protein standard cocktails. Mascot search
options against the NCBInr are 1 missing tryptic cleavage,
monoisotopic mass with MS/MS error tolerance 0.8 Da along
with fixed modification with carbamidomethyl(C) and varied
modification with oxidation (M) for the top plot and varied
modification of carbamidomethyl(C), deamidation(NQ), oxidation
(M) and phosphorylation (ST) for the bottom plot. Here, a mis-
hit stands for any matched peptide not from the proteins
expected in the sample.

Conclusions

A software prototype for scoring spectral quality employs a
quadratic discriminant function calibrated from manually
selected ‘good’ and ‘bad’ spectra. This score provides a simple
and robust tool for a quantitative measurement of spectral data
quality. The score was used to categorize protein standards,
training data and yeast lysate spectra into noisy, less noisy,
good and better spectra. It is evident that Mascot peptide
matches and peptide hit thresholds are a function of spectral
quality measurement when searching protonated peptide ITMS
CID spectra against protein sequence libraries.

The spectral quality score is useful in locating false positive
and false negative prone peptide identifications, especially
when identifying good quality spectra warranting further

research articles

investigation. For the yeast lysate data, more than 50% of
nonredundant multiply charged DTA files were scored as good
quality spectra but failed to generate significant peptide
matches when searching against the NCBInr by the search
engine Mascot. This indicates that improvement of search
methods may increase the yield of significant peptide identi-
fications. For example, lenient settings of the MS/MS m/z error
and expanded modification options may be warranted for
assigning peptide sequences to good quality spectra. In addi-
tion, protein standard data indicates that false peptide iden-
tification can be decreased by adjusting the acceptance thresh-
olds inversely with spectral quality scores. The tool is shown
to be useful in assessing data quality for shotgun proteomics.
The scoring function can become more generic and better
tuned by the addition of more training data.
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